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ABSTRACT. The inhomogeneity of the surrounding of scattering molecules significantly affects the
intensity distribution in coherent anti-Stokes Raman scattering (CARS) spectra and excitation profiles.
A theoretical expression is obtained that describes the excitation profile of an arbitrary relationship
between the relaxation constant  of the vibronic levels of the excited electronic state and parameter ,
characterizing the inhomogeneity of the environment. The possible influence of inhomogeneity on the
CARS spectral lines is also discussed in the paper. © 2014 Bull. Georg. Natl. Acad. Sci.
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Coherent anti-Stokes Raman spectroscopy (CARS) is a form of spectroscopy used primarily in chemistry,
physics, biology and related fields. It is sensitive to the same vibrational signatures of molecules as seen in
Raman spectroscopy, typically the nuclear vibrations of chemical bonds. Unlike Raman spectroscopy, CARS
employs multiple photons to address the molecular vibrations, and produces a coherent signal. As a result,
CARS is the order of magnitude stronger than spontaneous Raman emission.

In the CARS process, three waves, two at the pumping frequency 1 and one at the Stokes frequency 1

interact with a molecule. Nonlinear optical effects caused by the so-called (3)  mechanism ( (3)  is the third-
order nonlinear susceptibility) led to the formation of new coherent radiation at the anti-Stokes frequency 3=
2 1– 2. The efficiency of such a process attained in any medium grows sharply as the difference 1–2

approaches the frequency of Raman – active transition /
g gn n   .

  In view of the relatively small width 
gn  (several cm–1) of the vibronic states | gn   relative to the

ground electronic state of the molecule, the CARS spectrum, i. e. the dependence of the intensity of the
radiation generated at the frequency 3 =1+  on  for fixed values of 1, has a quasidiscrete character.
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Nonzero intensities are actually attained for .
gn   To obtain the corresponding excitation profile one

scans the frequencies 1 and 2 in such a way that 1–2  gn  is fulfilled all the time. According to [1], the

shape of the band of the excitation profile possesses increased sensitivity to different broadening mecha-
nisms – homogeneous (primarily relaxation) and inhomogeneous (frequently fluctuating), which  in its own
way can promote unique solution to both problems identifying the contributions of the separate mechanisms
of excitation profile broadening and determining the parameters characterizing the change of the equilibrium
geometry molecules in the excited electronic state. This paper is devoted to a study of the simultaneous effect
of condensed medium and intramolecular processes on the excitation profile of CARS spectral lines.

According to [2], one may reduce the effect of the medium (inhomogeneity of the surroundings of the
scattering molecules in solution) on the formation of the excitation profile of CARS spectral lines, as in weakly
polar and nonpolar solvents, to an averaging function, which describes the intensity distribution  in the
CARS spectra and of the intensity distribution in the CARS spectra and of the corresponding excitation
profiles within the framework of the so-called fundamental theory of the model of vibronic interactions
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In (2) eg  is the electric dipole moment on the transition; | ek   and | em   are the vibronic states of the

excited electron level with energies   and m  measured with ( 1)eg  ; and 
ek  and 

cm  are

phenomenologogically introduced relaxation constants. One may treat (2) as the probability amplitude of a
four – step process of virtual transition described by the fourth-order perturbation theory for the interaction
of radiation with a molecule.

In view of the coherence of the CARS process, according to [2] one may perform all averaging, including

that over the variations of eg , for probability amplitudes, i.e., for the square of the absolute value of (2). One

must average (2) over a Gaussian distribution

     1 2 22 exp / 2 ,eg eg eg     
       (3)

because variations of the local environment, as a consequence of fluctuations, have a Gaussian character in

the majority of actual case. The correct averaging of (3)
gn  over the distribution of  (3) was first performed in

[2]. However, both the further theoretical analysis of the final expressions obtained there and their use in
quantitative computations are extremely difficult.

Having substituted 1–2  gn  in  (2) and transforming the remaining part of the denominator into the

form
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it is not difficult to carry out the averaging of (3)
1( )

gn   with respect to Eq.(3) with consideration of



74 Merab Zakaraya and George Chonishvili

Bull. Georg. Natl. Acad. Sci., vol. 8, no. 1, 2014

1
1( ) .

2 2
eg

eg

iii W
    

 
     

      
 

  (5)

Here W(z) is a complex function [3].
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connected by a simple relation with the plasma dispersion function

( ) ( ).Z i i W i       (7)

We separate the real () and imaginary () parts of the function ( )W z i    from (6) for arbitrary
values of   and   in the form of rapidly converging series of [4,5] (see (8) and (9) of [4]). Below we present
simpler, but still accurate expressions for the functions

2 2 2 2 2( ; ) exp( ){exp( )cos(2 )[1 (2 )] (2 / ) exp( / 4)cosh( ) /( 4 )}
n

cth n n n         



        (8)

2 2 2 2 2( ; ) exp( ){exp( )sin(2 )[cth(2 ) 1] (1/ ) exp( / 4)sinh( ) /( 4 )}
n

n n n n         


      (9)

which were obtained from [3] with the aid of the summation
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We recall that ( ; ) Re ( ; )W      is called the Voigt function in spectroscopy. In the general case, it

determines the dependence of the different spectral coefficients on frequency (  is the dimensionless
detuning of the resonance frequency) and plays an important role in all questions connected with the

interpretation of the line share. It is not difficult to show that near the maximum (| | 1)   (and more accurately

the smaller the fundamental parameter / 2   ). That is, one may approximate ( ; )   with
2( ; ) exp( )[ ( ) ( )cos(2 )], ( ) 1a b           (11)

with coefficients
2 1( ) 1/ ; ( ) exp( ) ( ) ( ) ,a b erfc         (11’)

When the inhomogeneous (Gaussian) broadening  mechanism dominates the homogeneous (Lorentzian).
So far as the far wings of the Voigt curve symmetrical with respect to 0   are concerned, they approxi-

mate the shape of the Lorentzian line
2 2 2 2 2 2( ; ) [ / ( )][1 /( ) ], | | 1,               (12)

where the expression in the second set of brackets gives a correction to the Lorentzian line for the wing of a
Voigt curve.

  Finally, so far as returning to analysis of (1)-(3), it is easy to find the antisymmetric function

( ; ) ( ; )         [(8)], which describes the dispersion curve, according to (7) and (8), by simple differen-

tiation of ( ; ) 
1( ) (2 ) / ( ; ) ( ; ).            (13)

Returning to the averaging of the expression for (3)
1( )

gn   over the distribution of (3) taking into account

(2), (5), (8)  and (9), we find it more difficult to write
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According to (14), ,e e

g

K m
n   is a complex quantity whose real and imaginary parts make identically

significant contributions to the intensity distribution in CARS spectra and to the formation of the corre-
sponding excitation profiles.

  For the purpose of simplifying further analysis of (13) we treat the case of the presence of only one active
vibrational degree of freedom with a frequency   that does not change as a result of electronic excitation

and a dimensionless shift 0Q  of the equilibrium position along the normal coordinate. A simple analysis of

(13) shows that only terms with 0
gn m      make a basic contribution to the double sum, i.e., those

terms corresponding to the so-called double resonance make a significant contribution:

1 3e egeg eg m          . Therms with 1 ( 0,1,...)e e em      will correspond to the resonance

condention for the excitation profile of the fundamental spectral lines with 1gn   of CARS. We note that
(3)
1g

   does not have a singularity in view of the parameters corresponding to different vibrational levels

of the excited electronic state. Therefore, (3)
   is approximated by the sum of therms with  1e em  

more accurately the smaller the difference 
e em m   in comparison with the frequency   of the active

vibration. A stricter criterion has the form
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where we made use of the value of the Voigt function at its maximum 2( ; ) exp( ) ( ).erfc    

For the purpose of studying the possible influence of the effects of inhomogeneity on the shape of the
CARS spectral lines, it is convenient to tune 1  in resonanse with eg  and to investigate the components of

(3)  as a function of the detuning 1–2. Having denoted 
gI     we find it not difficult to write from

(2) and (4)
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 As a consequence, according to (16) and (17), the questions of when and how inhomogeneity of the
surroundings affects the shape of a CARS spectral line depends essentially on the characteristic scale of the

change of the functions ( / 2 ; )     and ( / 2 ; )    , i.e., on their sensitivity as functions to / 2 

for arbitrary, but fixed for each specific case,  . Practically, in oll actual cases, it is reasonable to consider

1~ g  , i.e., / 2  , when one may approximate ( ; )   with the aid of (11); but according to (13), one

approximates ( ; )   , by the function

  1
2 2 2( ; ) ( ) exp( )sin(2 2 ) exp( ) ( ) exp( )sin(2 2 ).b erfc            

       
 (18)

This simplifies maximally both the theoretical and quantitative analysis of the possible effect of the
inhomogeneity of the surroundings of the molecules on the shape of a CARS spectral line for   not exceeding
one or two tens of cm–1.

We note in conclusion that other terms of the double sum in (14) together with the resonance terms (with
1e em    in (14))  make a significant contribution to both the excitation profile and the natural spectra of

CARS. Their consideration is also necessary for a quantitative treatment of the experimental data for the
excitation profile and CARS lines, and this will be treated in detail in the example of the biologically important
molecule, -carotene, in a separate work. We add here that an analogous procedure for studying the effect of
a Gaussian inhomogeneity on the excitation profile of resonance Raman scattering lines [6] was successfully
tested on carotinoids [7-9].

fizikuri qimia

axali formulebi gamxsnelebSi molekulebis mier
sinaTlis koherentuli antistoqsuri gabnevis
Sesabamisi agznebis profilebisaTvis

m. zaqaraia*, g. WoniSvili**

*i. javaxiSvilis sax. Tbilisis saxelmwifo universitetis r. aglaZis araorganuli qimiisa da
eleqtroqimiis instituti, Tbilisi
** i. gogebaSvilis sax. saxelmwifo universiteti, Telavi

(warmodgenilia akademikos g. cincaZis mier)

kondensirebul garemoSi molekulebis (minarevuli centrebis) mier sinaTlis
koherentuli-antistoqsuri gabnevis speqtrebsa da Sesabamis agznebis profilebze garemos
araerTgvarovneba sagrZnob zemoqmedebas axdens. naSromSi gaanalizebulia garsis agznebis
profilebze garemos araerTgvarovnebisa da molekulis Sida relaqsaciuri procesebis
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erTdrouli da Tanazomieri zemoqmedebis Sedegebi. Sedegebi zogadia da araerTgvarovnebis
maxasiaTebelis () da relaqsaciuri parametris () nebismieri TanafardobisaTvis
samarTliania.
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